

im-c.com

Technical
Whitepaper

imc Learning Suite
Neue Systemarchitektur und Technologien

Seite 2

imc AG – Technical Whitepaper | Neue Systemarchitektur und Technologien

Technical Whitepaper

imc Learning Suite
Neue Systemarchtitektur und Technologien

Autor(en): Martin Mehlmann
Datum: 13.07.2022

Dokument Beschreibung

Version 14.13

Status (Entwurf / Überarbeitung/ Finalisierung) Finalisierung

Kontaktperson(en) Product Management Team

Historie Status Wer

25.01.2021 Entwurf Martin Mehlmann

22.03.2022 Überarbeitung Eric Andre

12.07.2022 Überarbeitung Andreas Pohl

13.07.2022 Finalisierung Dr. Peter Zönnchen

imc
information multimedia communication AG
Hauptsitz Saarbrücken
Scheer Tower, Uni-Campus Nord
D-66123 Saarbrücken
T. +49 681 9476-0 | Fax -530
info@im-c.com
im-c.com

Seite 3

imc AG – Technical Whitepaper | Neue Systemarchitektur und Technologien

Inhalt

1 Einleitung 4

2 Systemarchitektur 5

2.1 Microservices 5

2.2 Containerisierung 7

2.3 Kommunikation 9

2.4 Konfigurationsmanagement 10

2.5 Systembereitstellung 11

2.6 Skalierbarkeit und Lastausgleich 13

2.7 Zentralisierte Protokollierung 14

Seite 4

imc AG – Technical Whitepaper | Neue Systemarchitektur und Technologien

1 Einleitung

In den letzten Jahren haben agile Entwicklung, Cloud-Hosting, DevOps, Continuous
Integration und Continuous Deployment zunehmend an Bedeutung gewonnen. In-
folgedessen hat sich eine bestimmte Softwarearchitektur namens "Microservices"
als besonders geeignet für komplexe Webanwendungen herauskristallisiert. Durch
den Einsatz einer Microservices-Architektur ist es möglich, alle wichtigen Anforde-
rungen an ein modernes System wie Performance, Zuverlässigkeit, Sicherheit, Ska-
lierbarkeit und Innovationsgeschwindigkeit gleichzeitig zu erfüllen. Aus diesem
Grund hat sich die imc AG entschieden, ihr Learning Management System (LMS)
ab dem Release der Version 14.8.0.0 auf Basis einer solchen Architektur zu entwi-
ckeln.

Das vorliegende Dokument beschreibt die verschiedenen Aspekte dieser Architek-
tur und gibt einen Überblick über die zur Umsetzung verwendeten Technologien.
Die Zielgruppe dieses Dokuments sind Entscheidungsträger und IT-Fachleute, die
für die Evaluierung und Einrichtung eines LMS in ihrer Organisation verantwortlich
sind. Der Schwerpunkt liegt darauf, die Vorteile einer solchen Architektur aus Sicht
des Kunden aufzuzeigen, ohne dabei zu sehr ins technische Detail zu gehen.

Seite 5

imc AG – Technical Whitepaper | Neue Systemarchitektur und Technologien

2 Systemarchitektur

Abb. 2.1: Systemarchitektur

2.1 Microservices

Bis zur Version 14.8.0.0 war das LMS als monolithische Anwendung implementiert. Eine monoli-

thische Anwendung ist in sich geschlossen und unabhängig von anderen Anwendungen. Sie stellt

die gesamte Funktionalität des Systems zur Verfügung und führt alle erforderlichen Aufgaben

selbständig aus. Der Vorteil einer monolithischen Anwendung ist ihre Unabhängigkeit, d. h. sie

kann als eine einzige Einheit eingesetzt werden.

Mit zunehmender Größe und Komplexität der Anwendung erweist sich diese Unabhängigkeit je-

doch eher als Hindernis denn als Hilfe. Der Programmcode, der aus Hunderttausenden von Zeilen

bestehen kann, befindet sich oft in einem einzigen Repository und ist schwer zu verwalten. Es ist

eine große Disziplin erforderlich, um eine modulare Struktur zu gewährleisten. Selbst die kleinste

Änderung an einem Teil der Anwendung erfordert, dass die gesamte Anwendung neu erstellt und

eingesetzt wird. Dies ist fehleranfällig, mühsam und zeitaufwendig. Darüber hinaus kann eine mo-

nolithische Architektur dazu führen, dass ein Release verschoben wird, weil die Implementierung

Seite 6

imc AG – Technical Whitepaper | Neue Systemarchitektur und Technologien

an einem bestimmten Teil der Anwendung noch nicht abgeschlossen ist, alle anderen Teile aber

schon.

Diese Tatsachen verlangsamen die Innovationsgeschwindigkeit und führen zu einem Zustand, in

dem das System mit der Zeit immer fehleranfälliger wird. Aus diesem Grund hat sich die imc AG

entschieden, ihre Architektur auf eine moderne Microservices-Architektur umzustellen. Auch

wenn dies eine große Investition bedeutet, sind wir davon überzeugt, dass wir unseren Kunden

damit die bestmögliche Softwarelösung für ihre Bedürfnisse bieten.

Microservices sind ein Architekturmuster, bei dem das Gesamtsystem aus einer Menge von un-

abhängigen Diensten besteht, die über sprachunabhängige Programmierschnittstellen miteinan-

der kommunizieren. Die Dienste sind weitgehend entkoppelt und jeder Dienst führt eine wohlde-

finierte kleine Aufgabe aus. Der Grundgedanke eines Microservices besteht darin, eine Sache zu

tun und diese eine Sache gut zu machen. Auf diese Weise ermöglichen Microservices einen mo-

dularen Aufbau von Anwendungssoftware. Eine Microservices-Architektur bringt eine Reihe von

deutlichen Vorteilen mit sich:

– Die Komplexität eines einzelnen Dienstes ist gering und leicht überschaubar. Dies reduziert

die Wahrscheinlichkeit von Implementierungsfehlern und gewährleistet eine hohe Qualität der

Software.

– Jeder Dienst wird unabhängig von allen anderen Diensten entwickelt. Da die Abhängigkeiten

zu anderen Diensten gering gehalten werden, kann ein Dienst in der Regel freigegeben wer-

den, sobald er fertiggestellt ist. Dies verbessert die Innovationsgeschwindigkeit deutlich.

– Ein Dienst kann unabhängig bereitgestellt werden. Sobald eine neue Version eines Dienstes

verfügbar ist, kann sie eine ältere Version desselben Dienstes ersetzen, auch in einem laufen-

den System. Dies führt zu schnelleren Releases, die mit weniger oder sogar ohne Ausfallzeit

bereitgestellt werden können.

– Die Schnittstellen der Services basieren auf bewährten Technologien wie REST und asynchro-

nem Message Passing. Bei der imc AG werden diese Schnittstellen von einem engagierten

Team erfahrener Experten definiert, um eine zuverlässige und performante Kommunikation

zu gewährleisten und unerwünschte Abhängigkeiten zu vermeiden, die bei monolithischen An-

wendungen oft entstehen.

– Microservices können automatisch, dynamisch und unabhängig voneinander skaliert werden.

Durch das Einrichten von Replikaten, also mehreren Instanzen desselben Dienstes, ist es

möglich, die Last auszugleichen und das System robust zu halten, auch wenn eine Instanz ei-

nes Dienstes ausfällt. Dies führt zu einer besseren Leistung und Fehlertoleranz.

– Durch den Einsatz von Containern und Systemen zur Container-Orchestrierung, wie z. B. Ku-

bernetes, wird die Nutzung der Ressourcen jederzeit automatisch an die jeweiligen Gegeben-

heiten angepasst. Dies führt zu einer optimalen Ressourcenauslastung und Kosteneinsparun-

gen.

Seite 7

imc AG – Technical Whitepaper | Neue Systemarchitektur und Technologien

– Die imc AG bedient vor allem große Kunden mit mehreren zehntausend Nutzern. Durch den

Einsatz von Microservices ist es nun möglich, aus der Menge der verfügbaren Services ein

System individuell zusammenzustellen, wobei jeder dieser Services eine bestimmte Funkti-

onsdomäne implementiert. Dies ermöglicht neue Preismodelle, da die Services unabhängig

voneinander verkauft werden können und das Basissystem zu einem niedrigeren Preis ange-

boten werden kann, was es auch für kleinere Kunden attraktiv und erschwinglich macht.

Natürlich gibt es auch Nachteile bei der Verwendung einer Microservices-Architektur:

– Da Microservices eine verteilte Architektur sind, weisen sie alle Probleme auf, die mit verteil-

ten Architekturen im Allgemeinen einhergehen, wie z. B. erhöhte Komplexität, Datenkonsis-

tenz und die Notwendigkeit einer ausgefeilten Fehlerbehandlung. Da unsere Softwareentwick-

ler entsprechend geschult sind, sind wir davon überzeugt, dass wir die erhöhte Komplexität

sicher handhaben können.

– Eine Microservices-Architektur benötigt in der Regel mehr Ressourcen als eine monolithische

Anwendung, insbesondere wenn Container eingesetzt werden. Allerdings ist die Hardware

heutzutage meist nicht mehr der limitierende Faktor. Zudem sorgen Systeme zur Container-

Orchestrierung dafür, dass nur die Ressourcen genutzt werden, die tatsächlich benötigt wer-

den.

– Das Deployment einer Microservices-Architektur ist anspruchsvoller als das einer monolithi-

schen Anwendung. Aus diesem Grund stellt die imc AG ihren On-Premise-Kunden Deploy-

ment-Pakete für verschiedene Zielplattformen zur Verfügung, die weitgehend in sich ge-

schlossen sind. Das Hosting von Cloud-Systemen wird bei imc von einem erfahrenen Team

von Ingenieuren durchgeführt.

2.2 Containerisierung

Abb. 2.2: Containerisierung

Seite 8

imc AG – Technical Whitepaper | Neue Systemarchitektur und Technologien

Containerisierung ist eine Form der Betriebssystemvirtualisierung, bei der Anwendungen in iso-

lierten Softwareumgebungen, den sogenannten "Containern", ausgeführt werden. Ein Container

ist im Wesentlichen eine vollständig verpackte Datenverarbeitungsumgebung, die die Anwen-

dung, ihre Abhängigkeiten und ihre Konfiguration in einem einzigen "Container-Image" bündelt.

Mit Hilfe einer Containerisierungssoftware wie Docker können mehrere Container auf demselben

gemeinsamen Betriebssystem ausgeführt werden.

Der Container selbst ist vom Betriebssystem abstrahiert und hat nur begrenzten Zugriff auf die

darunter liegenden Ressourcen. Dadurch kann die containerisierte Anwendung in verschiedenen

Infrastrukturen betrieben werden, auf Bare Metal, in virtuellen Maschinen und in der Cloud - ohne

dass sie für jede Umgebung angepasst werden muss.

Seit dem Release 14.8.0.0 kann das LMS als ein Satz von Container-Images bereitgestellt werden.

Diese Container-Images werden zusammen gestartet, um ein isoliertes Netzwerk von Containern

zu bilden, in dem ein definierter Satz von Ports für das Host-System zugänglich gemacht werden

kann. Container eignen sich besonders gut für eine Microservices-Architektur, bei der jeder Dienst

und alle seine Abhängigkeiten in einem einzigen Container-Image gebündelt sind.

Die Containerisierung bietet eine Menge von Vorteilen:

– Portabilität zwischen verschiedenen Plattformen. Docker-Container können fast überall aus-

geführt werden, sowohl auf virtualisierten Infrastrukturen als auch auf Bare-Metal-Servern. Sie

können in der Cloud oder auf jeder selbst gehosteten Maschine mit Linux oder Microsoft

Windows eingesetzt werden.

– Verbesserte Sicherheit durch Isolierung der Anwendungen vom Hostsystem und voneinander.

– Schnelle und einfache Installations-, Upgrade- und Rollback-Prozesse mit einer Container-Or-

chestrierungssoftware wie Kubernetes.

– Skalierbarkeit und Replikation auf Container-/Microservices-Ebene. Dies ermöglicht perfor-

mante und hochverfügbare Systemimplementierungen.

– Flexibles Routing zwischen Diensten, die nativ von Containerisierungsplattformen unterstützt

werden.

Aufgrund dieser Vorteile empfehlen wir, das LMS nach Möglichkeit in einer containerisierten Um-

gebung zu betreiben. Natürlich unterstützen wir weiterhin die Option, die neue Microservices-Ar-

chitektur in einer nicht containerisierten Umgebung einzusetzen. Beginnend mit 14.8.0.0 stellen

wir mit jeder Version ein Microsoft Windows Deployment-Paket zur Verfügung, das vollständig in

sich geschlossen ist. Neben den WAR-Dateien, die für die Ausführung der Dienste erforderlich

sind, enthält es einen Tomcat-Servlet-Container, eine Java-Laufzeitumgebung und Wartungs-

skripte zur Installation und Wartung der Bereitstellung als Satz von Microsoft Windows-Diensten.

Seite 9

imc AG – Technical Whitepaper | Neue Systemarchitektur und Technologien

2.3 Kommunikation

Abb. 2.3: Kommunikation.

In Bezug auf die Kommunikation wird zwischen externer und interner Kommunikation unterschie-

den. Innerhalb des Systems kommunizieren die Microservices entweder synchron über HTTP

oder durch asynchrone Nachrichten über einen Message Bus. Ob synchrone oder asynchrone

Kommunikation verwendet wird, hängt vom jeweiligen Anwendungsfall ab.

Von außen ist das System standardmäßig nur über einen einzigen HTTPS-Port zu erreichen. Alle

eintreffenden Anfragen werden von einem dedizierten Microservice, dem Gateway-Dienst, bear-

beitet. Bei jeder Anfrage prüft und verifiziert das Gateway ein JWT, das zur Authentifizierung des

Benutzers dient. Anschließend leitet er die eingehenden Anfragen an den entsprechenden Dienst

weiter, wobei er eine Reihe von Routing-Regeln verwendet und somit als Reverse-Proxy fungiert.

Das Gateway basiert auf Netflix Zuul.

Falls das Gateway eine Anfrage ohne gültiges JWT erhält, leitet es diese Anfrage an den Identity

Management Service (IDM) weiter. Der IDM unterstützt verschiedene Authentifizierungsmetho-

den, um den Benutzer zu authentifizieren. Bei Erfolg gibt er ein JWT aus, das einige grundlegende

Informationen über den Benutzer als Nutzdaten enthält. Für browserbasierte Clients wird das

JWT als Cookie gespeichert, so dass jede weitere Anfrage das Gateway passiert und die Dienste

innerhalb der Komposition erreicht. Das LMS stellt eine umfangreiche REST-API zur Verfügung,

die von außen über das Gateway zugänglich ist. Der Zugriff auf die meisten Endpunkte erfordert

jedoch eine Authentifizierung.

Gateway-Dienst und IDM sind beides Kerndienste, die Teil jeder Bereitstellung sind.

https://jwt.io/
https://github.com/Netflix/zuul

Seite 10

imc AG – Technical Whitepaper | Neue Systemarchitektur und Technologien

2.4 Konfigurationsmanagement

Abb. 2.4: Startkonfiguration.

Die Startkonfiguration umfasst alles, was notwendig ist, damit das System ordnungsgemäß im

gewünschten anfänglichen Systemzustand hochfährt. Dieser Teil der Konfiguration wird beim

Systemstart verarbeitet und ändert sich nicht zur Laufzeit. Falls die Startup-Konfiguration geän-

dert werden muss, ist ein Neustart des Systems erforderlich. Die Startup-Konfiguration erfolgt

über Konfigurationsdateien mit einem externen, zentralisierten Ansatz.

Extern bedeutet, dass die Konfiguration nicht Teil der Build-Artefakte ist, sondern außerhalb von

ihnen lebt. Durch diese Trennung ist es möglich, die Konfiguration eines Dienstes zu ändern, ohne

dessen Binärdateien neu erstellen zu müssen.

Zentralisiert bedeutet, dass es einen dedizierten Dienst gibt, den Config Server, der Teil jedes

Deployments ist und die Konfiguration für alle anderen Dienste über eine REST-API bereitstellt.

Bitte beachten Sie, dass dies zu einer Startabhängigkeit führt. Beim Starten des Systems warten

alle Dienste darauf, dass der Config Server verfügbar ist, um sich vor dem Start zu konfigurieren.

Der Config Server basiert auf dem Spring Cloud Config Server. Die eigentlichen Konfigurationsda-

teien können in verschiedenen Backends liegen, z. B. in einem Git-Repository, auf einem Webser-

ver oder auf einem lokalen oder einem gemounteten Dateisystem.

Die Laufzeitkonfiguration hingegen umfasst alles andere, also alle Konfigurationseinstellungen,

die beim Systemstart nicht verfügbar sein müssen. Die Laufzeitkonfiguration wird über die Benut-

zeroberfläche des Config-Managers im ILS-Dienst vorgenommen. Die dort zur Laufzeit vorgenom-

menen Änderungen werden in der ILS-Datenbank gespeichert. Alle anderen Dienste verwenden

einen internen REST-API-Endpunkt, um ihre Laufzeitkonfiguration in regelmäßigen kurzen Abstän-

den abzufragen, um sie anzuwenden.

https://cloud.spring.io/spring-cloud-config/reference/html/

Seite 11

imc AG – Technical Whitepaper | Neue Systemarchitektur und Technologien

Bitte beachten Sie, dass die oben beschriebene Trennung in Startup- und Runtime-Konfiguration

weitgehend, aber noch nicht vollständig umgesetzt ist. Das bedeutet, dass es immer noch Werte

in den Konfigurationsdateien gibt, die besser in der Datenbank gehalten werden sollten, um sie

ändern zu können, ohne dass ein Systemneustart erforderlich ist. Dennoch werden wir diese Auf-

teilung in naher Zukunft vollständig implementiert haben.

2.5 Systembereitstellung

Für On-Premise-Kunden kann das LMS als Microservices auf verschiedenen Plattformen instal-

liert werden. Die beste Option aus unserer Sicht ist die Bereitstellung in einer Container-Umge-

bung aufgrund der oben genannten Vorteile. Wir bieten auch Deployment-Pakete für die Installa-

tion auf einer Bare-Metal-Maschine mit einem Microsoft Windows-Betriebssystem an. Ein Deploy-

ment-Paket für ein Bare-Metal-Linux stellen wir derzeit nicht zur Verfügung.

Unsere kontinuierliche Pipeline erstellt automatisch Artefakte für jeden Service, den wir anbieten.

Dies sind in der Regel WAR-Dateien für Java-Backend-Dienste, die auf Spring boot basieren und

entweder in einem Tomcat Servlet Container oder als eigenständige Anwendungen ausgeführt

werden können. Für Frontend-Dienste sind die Artefakte minimierte, komprimierte Archive mit Ja-

vaScript-Quellen und anderen Assets, die auf einem einfachen Webserver extrahiert werden kön-

nen. Neben den Artefakten baut die Pipeline auch Docker-Images für jeden Dienst. Diese werden

in unserer internen Docker-Registry gehostet und im Falle eines neuen Releases in die AWS ECR

oder eine andere Container-Registry gepusht, um sie den Kunden zur Verfügung zu stellen.

Abb. 2.5: Container-Bereitstellung.

https://spring.io/projects/spring-boot
https://aws.amazon.com/de/ecr/
https://aws.amazon.com/de/ecr/

Seite 12

imc AG – Technical Whitepaper | Neue Systemarchitektur und Technologien

Für eine containerisierte Bereitstellung stellen wir Docker-Images in kundenspezifischen AWS

ECR-Namespaces bereit. Bitte beachten Sie, dass es auch mehrere Images für einen einzelnen

Service geben kann, z. B. für Backend, Frontend und sogar Datenbank. Diese Images können von

einem Kunden nach erfolgreicher Anmeldung gezogen werden. Zusätzlich liefern wir die Start-

konfigurationsdateien als komprimiertes Archiv zusammen mit einer docker-compose.yml-Datei,

die zeigt, wie die Dienste zusammengesetzt werden. Natürlich ist auch eine ausführliche Doku-

mentation im Paket enthalten.

Abb. 2.6: Windows-Bereitstellung.

Für Bare-Metal-Implementierungen unter Microsoft Windows stellen wir ein Paket bereit, das alles

enthält, was zur Installation und Wartung des Systems erforderlich ist. Dazu gehören ein abge-

härteter Tomcat-Servlet-Container, Artefakte aller Dienste, eine Java-Laufzeitumgebung, Konfigu-

rationsdateien, Wartungsskripte und eine ausführliche Dokumentation. Die meisten Service-Arte-

fakte werden in Tomcat bereitgestellt, es gibt jedoch zwei Ausnahmen, das Gateway und der Con-

fig Server werden als eigenständige Spring-Boot-Anwendungen bereitgestellt. Tomcat, Gateway

und Config Server werden bei der Installation des Systems als Microsoft Windows-Dienste regis-

triert, um einen automatischen Start beim Hochfahren von Microsoft Windows zu ermöglichen

und die Möglichkeit zu haben, diese Dienste über den Microsoft Windows Services Manager zu

stoppen und zu starten.

Für Cloud-Kunden bieten wir eine Vielzahl von Bereitstellungsoptionen an. Bitte kontaktieren Sie

unsere Hosting-Experten, damit sie Ihre Anforderungen einschätzen und die bestmögliche Lö-

sung für Sie finden können. Insbesondere die Bereitstellung auf Kubenetes ermöglicht eine Viel-

zahl von Optionen zur Anpassung und Feinabstimmung.

Seite 13

imc AG – Technical Whitepaper | Neue Systemarchitektur und Technologien

2.6 Skalierbarkeit und Lastausgleich

Wenn es um den Lastausgleich und den ausfallsicheren Betrieb einer containerisierten Bereitstel-

lung geht, bietet Kubernetes mehrere Möglichkeiten, dies zu erreichen, z. B. durch das Einrichten

von Replikaten von Containern und durch die Verwendung des Kubernetes-Ingress-Controllers.

Neben dem in Kubernetes integrierten Lastausgleichs bieten viele Cloud-Provider Container-Last-

ausgleich-Dienste mit providerabhängigen Fähigkeiten an. Wir verweisen den Leser auf die Doku-

mentation der Container-Orchestrierungsplattform und des Cloud-Anbieters für weitere Informa-

tionen. Im Allgemeinen gibt es für containerisierte Bereitstellungen eine große Auswahl an Last-

ausgleich-Lösungen auf dem Markt. Der Hauptvorteil einer containerisierten Bereitstellung in Be-

zug auf Lastausgleich ist die Tatsache, dass es möglich ist, einzelne Container und damit Dienste

dynamisch und automatisch zu skalieren. Das führt zu hochperformanten Systemen, die sich je

nach Ressourcenbedarf anpassen.

Bei einem Windows-Einsatz wird die Skalierung einzelner Dienste, die als Kontexte im Tomcat-

Servlet-Container laufen, nicht unterstützt. Stattdessen kann das System nur skaliert werden, in-

dem Replikate des gesamten Systems eingerichtet werden. Das heißt, es werden zwei Bereitstel-

lungen parallel betrieben und ihnen ein Server vorgeschaltet, der Lastausgleich unterstützt, z. B.

Microsoft IIS. Diese Form der Skalierung ist fix und passt sich nicht an, solange keine zusätzliche

Skalierungssoftware im Spiel ist.

Soll das LMS in einem Cluster-Modus mit mehreren Replikaten betrieben werden, sind einige Be-

sonderheiten zu beachten:

– Das LMS ist nicht zustandslos und verwendet Web-Sessions, um den aktuellen Benutzer zu

identifizieren. Daher muss auf dem Load Balancer die Session-Affinität aktiviert werden.

– Das LMS speichert Dateien nicht als binäre Blobs in der Datenbank, sondern als reguläre Da-

teien in einem eigenen Verzeichnis "data" im Dateisystem. Dieses Verzeichnis muss von allen

Replikaten gemeinsam genutzt werden, indem Netzlaufwerke für Bare-Metal-Bereitstellungen

von Microsoft Windows oder gemeinsam genutzte Cloud-Dateispeicherdienste wie Azure Fi-

les oder AWS EFS für containerisierte Bereitstellungen verwendet werden.

https://www.iis.net/
https://aws.amazon.com/efs/

Seite 14

imc AG – Technical Whitepaper | Neue Systemarchitektur und Technologien

2.7 Zentralisierte Protokollierung

Bei Bare-Metal-Bereitstellungen von Microsoft Windows befinden sich alle Protokolldateien in ei-

nem Unterordner des Installationsordners.

Bei containerisierten Bereitstellungen erfolgt die Protokollierung innerhalb der einzelnen Contai-

ner. Sobald ein Container z. B. von der Orchestrierungssoftware nicht mehr bereitgestellt wird,

sind die Protokolldateien für diesen Container nicht mehr verfügbar. Um die Persistenz der Logfi-

les zu ermöglichen, bietet unsere Architektur die Möglichkeit, die Konsolenausgabe und alle Log-

files jedes Dienstes an einem zentralen Ort zu sammeln. Diese Aufgabe wird von einem dedizier-

ten Dienst, dem Logging Service, übernommen. Der Logging Service beinhaltet eine Elasticsearch

-Instanz zur Aggregation der Logdateien und eine Kibana-Instanz zur Visualisierung und Analyse

der Logdateien. Zusammen mit Logstash, einer kleinen Anwendung, die Teil jedes Service-Images

ist, wird das zentralisierte Logging realisiert.

https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/de/kibana
https://www.elastic.co/de/logstash

