imc

part of SCheel'

T

imc Learning Suite
Neue Systemarchitektur und Technologien

im-c.com

imc AG - Technical Whitepaper | Neue Systemarchitektur und Technologien

Technical Whitepaper

imc Learning Suite

imc

sarcor Scheer:

Neue Systemarchtitektur und Technologien

Autor(en): Martin Mehlmann
Datum: 13.07.2022

Version
Status (Entwurf / Uberarbeitung/ Finalisierung)

Kontaktperson(en)

14.13
Finalisierung

Product Management Team

25.01.2021 Entwurf
22.03.2022 Uberarbeitung
12.07.2022 Uberarbeitung
13.07.2022 Finalisierung

imc

information multimedia communication AG
Hauptsitz Saarbriicken

Scheer Tower, Uni-Campus Nord

D-66123 Saarbriicken

T. +49 681 9476-0 | Fax -530
info@im-c.com

im-c.com

Martin Mehlmann

Eric Andre

Andreas Pohl

Dr. Peter Zonnchen

Seite 2

imc AG - Technical Whitepaper | Neue Systemarchitektur und Technologien

Inhalt

2.1
2.2
2.3
2.4
2.5
2.6
2.7

Einleitung

Systemarchitektur
Microservices

Containerisierung
Kommunikation
Konfigurationsmanagement
Systembereitstellung
Skalierbarkeit und Lastausgleich
Zentralisierte Protokollierung

N o

O

11
13
14

Seite 3

imc AG - Technical Whitepaper | Neue Systemarchitektur und Technologien imc

1 Einleitung

In den letzten Jahren haben agile Entwicklung, Cloud-Hosting, DevOps, Continuous
Integration und Continuous Deployment zunehmend an Bedeutung gewonnen. In-
folgedessen hat sich eine bestimmte Softwarearchitektur namens "Microservices"
als besonders geeignet fiir komplexe Webanwendungen herauskristallisiert. Durch
den Einsatz einer Microservices-Architektur ist es moglich, alle wichtigen Anforde-
rungen an ein modernes System wie Performance, Zuverlassigkeit, Sicherheit, Ska-
lierbarkeit und Innovationsgeschwindigkeit gleichzeitig zu erfiillen. Aus diesem
Grund hat sich die imc AG entschieden, ihr Learning Management System (LMS)
ab dem Release der Version 14.8.0.0 auf Basis einer solchen Architektur zu entwi-
ckeln.

Das vorliegende Dokument beschreibt die verschiedenen Aspekte dieser Architek-
tur und gibt einen Uberblick {iber die zur Umsetzung verwendeten Technologien.
Die Zielgruppe dieses Dokuments sind Entscheidungstrager und IT-Fachleute, die
flr die Evaluierung und Einrichtung eines LMS in ihrer Organisation verantwortlich
sind. Der Schwerpunkt liegt darauf, die Vorteile einer solchen Architektur aus Sicht
des Kunden aufzuzeigen, ohne dabei zu sehr ins technische Detail zu gehen.

Seite 4

imc AG - Technical Whitepaper | Neue Systemarchitektur und Technologien imc

sarcor Scheer:

2 Systemarchitektur

Monolithic Microservices

Architecture Architecture

. Y
Application Monolith Gateway

b -

User Interface
BL:;S"'II.ESS AEEEETES - ™, - ™, - ™,
ogic i
Layer
Microservice Microservice Microservice

R R

Database

Database Database

Database

Abb. 2.1: Systemarchitektur

2.1 Microservices

Bis zur Version 14.8.0.0 war das LMS als monolithische Anwendung implementiert. Eine monoli-
thische Anwendung ist in sich geschlossen und unabhangig von anderen Anwendungen. Sie stellt
die gesamte Funktionalitdat des Systems zur Verfligung und fiihrt alle erforderlichen Aufgaben
selbstandig aus. Der Vorteil einer monolithischen Anwendung ist ihre Unabhangigkeit, d. h. sie
kann als eine einzige Einheit eingesetzt werden.

Mit zunehmender GrofRe und Komplexitat der Anwendung erweist sich diese Unabhéangigkeit je-
doch eher als Hindernis denn als Hilfe. Der Programmcode, der aus Hunderttausenden von Zeilen
bestehen kann, befindet sich oft in einem einzigen Repository und ist schwer zu verwalten. Es ist
eine grof3e Disziplin erforderlich, um eine modulare Struktur zu gewahrleisten. Selbst die kleinste
Anderung an einem Teil der Anwendung erfordert, dass die gesamte Anwendung neu erstellt und
eingesetzt wird. Dies ist fehleranfallig, miihsam und zeitaufwendig. Dariiber hinaus kann eine mo-
nolithische Architektur dazu fiihren, dass ein Release verschoben wird, weil die Implementiesrelijtgg

imc AG - Technical Whitepaper | Neue Systemarchitektur und Technologien imc

sarcor Scheer:

an einem bestimmten Teil der Anwendung noch nicht abgeschlossen ist, alle anderen Teile aber
schon.

Diese Tatsachen verlangsamen die Innovationsgeschwindigkeit und fiihren zu einem Zustand, in
dem das System mit der Zeit immer fehleranfalliger wird. Aus diesem Grund hat sich die imc AG
entschieden, ihre Architektur auf eine moderne Microservices-Architektur umzustellen. Auch
wenn dies eine grole Investition bedeutet, sind wir davon lberzeugt, dass wir unseren Kunden
damit die bestmdgliche Softwareldsung fiir ihre Bedirfnisse bieten.

Microservices sind ein Architekturmuster, bei dem das Gesamtsystem aus einer Menge von un-
abhangigen Diensten besteht, die liber sprachunabhangige Programmierschnittstellen miteinan-
der kommunizieren. Die Dienste sind weitgehend entkoppelt und jeder Dienst fiihrt eine wohlde-
finierte kleine Aufgabe aus. Der Grundgedanke eines Microservices besteht darin, eine Sache zu
tun und diese eine Sache gut zu machen. Auf diese Weise ermoglichen Microservices einen mo-
dularen Aufbau von Anwendungssoftware. Eine Microservices-Architektur bringt eine Reihe von
deutlichen Vorteilen mit sich:

Die Komplexitat eines einzelnen Dienstes ist gering und leicht Uberschaubar. Dies reduziert
die Wahrscheinlichkeit von Implementierungsfehlern und gewahrleistet eine hohe Qualitat der
Software.

Jeder Dienst wird unabhangig von allen anderen Diensten entwickelt. Da die Abhangigkeiten
zu anderen Diensten gering gehalten werden, kann ein Dienst in der Regel freigegeben wer-
den, sobald er fertiggestellt ist. Dies verbessert die Innovationsgeschwindigkeit deutlich.

Ein Dienst kann unabhangig bereitgestellt werden. Sobald eine neue Version eines Dienstes
verfligbar ist, kann sie eine dltere Version desselben Dienstes ersetzen, auch in einem laufen-
den System. Dies fiihrt zu schnelleren Releases, die mit weniger oder sogar ohne Ausfallzeit
bereitgestellt werden konnen.

Die Schnittstellen der Services basieren auf bewahrten Technologien wie REST und asynchro-
nem Message Passing. Bei der imc AG werden diese Schnittstellen von einem engagierten
Team erfahrener Experten definiert, um eine zuverldssige und performante Kommunikation

zu gewahrleisten und unerwiinschte Abhangigkeiten zu vermeiden, die bei monolithischen An-
wendungen oft entstehen.

Microservices konnen automatisch, dynamisch und unabhangig voneinander skaliert werden.
Durch das Einrichten von Replikaten, also mehreren Instanzen desselben Dienstes, ist es
maoglich, die Last auszugleichen und das System robust zu halten, auch wenn eine Instanz ei-
nes Dienstes ausfallt. Dies fiihrt zu einer besseren Leistung und Fehlertoleranz.

Durch den Einsatz von Containern und Systemen zur Container-Orchestrierung, wie z. B. Ku-
bernetes, wird die Nutzung der Ressourcen jederzeit automatisch an die jeweiligen Gegeben-
heiten angepasst. Dies fiihrt zu einer optimalen Ressourcenauslastung und Kosteneinsparun-
gen.

Seite 6

imc AG - Technical Whitepaper | Neue Systemarchitektur und Technologien

imc

sarcor Scheer:

Die imc AG bedient vor allem grofRe Kunden mit mehreren zehntausend Nutzern. Durch den
Einsatz von Microservices ist es nun moglich, aus der Menge der verfiigbaren Services ein
System individuell zusammenzustellen, wobei jeder dieser Services eine bestimmte Funkti-
onsdomaéne implementiert. Dies ermdglicht neue Preismodelle, da die Services unabhangig
voneinander verkauft werden konnen und das Basissystem zu einem niedrigeren Preis ange-
boten werden kann, was es auch fiir kleinere Kunden attraktiv und erschwinglich macht.

Naturlich gibt es auch Nachteile bei der Verwendung einer Microservices-Architektur:

Da Microservices eine verteilte Architektur sind, weisen sie alle Probleme auf, die mit verteil-
ten Architekturen im Allgemeinen einhergehen, wie z. B. erhdhte Komplexitat, Datenkonsis-
tenz und die Notwendigkeit einer ausgefeilten Fehlerbehandlung. Da unsere Softwareentwick-
ler entsprechend geschult sind, sind wir davon tiberzeugt, dass wir die erhohte Komplexitat

sicher handhaben kénnen.

Eine Microservices-Architektur bendétigt in der Regel mehr Ressourcen als eine monolithische
Anwendung, insbesondere wenn Container eingesetzt werden. Allerdings ist die Hardware
heutzutage meist nicht mehr der limitierende Faktor. Zudem sorgen Systeme zur Container-
Orchestrierung daftir, dass nur die Ressourcen genutzt werden, die tatsachlich benétigt wer-

den.

Das Deployment einer Microservices-Architektur ist anspruchsvoller als das einer monolithi-
schen Anwendung. Aus diesem Grund stellt die imc AG ihren On-Premise-Kunden Deploy-
ment-Pakete fiir verschiedene Zielplattformen zur Verfligung, die weitgehend in sich ge-
schlossen sind. Das Hosting von Cloud-Systemen wird bei imc von einem erfahrenen Team
von Ingenieuren durchgefiihrt.

2.2 Containerisierung

App App

App App

Binaries / Libraries

Binaries / Libraries

Operating System

Operating System

App

App

App App App

Virtual Machine

Virtual Machine

Binaries / Libraries ‘

| Binaries / Libraries

Container

Container

Binaries / Libraries

Hypervisor

Container Runtime

Operating System

Hardware

Operating System

Operating System

Bare Metal

Abb. 2.2: Containerisierung

Hardware

Hardware

Traditional Virtualization

Containerization

Seite 7

imc AG - Technical Whitepaper | Neue Systemarchitektur und Technologien imc

sarcor Scheer:

Containerisierung ist eine Form der Betriebssystemvirtualisierung, bei der Anwendungen in iso-
lierten Softwareumgebungen, den sogenannten "Containern”, ausgefiihrt werden. Ein Container
ist im Wesentlichen eine vollstandig verpackte Datenverarbeitungsumgebung, die die Anwen-
dung, ihre Abhangigkeiten und ihre Konfiguration in einem einzigen "Container-Image" biindelt.
Mit Hilfe einer Containerisierungssoftware wie Docker konnen mehrere Container auf demselben
gemeinsamen Betriebssystem ausgefiihrt werden.

Der Container selbst ist vom Betriebssystem abstrahiert und hat nur begrenzten Zugriff auf die
darunter liegenden Ressourcen. Dadurch kann die containerisierte Anwendung in verschiedenen
Infrastrukturen betrieben werden, auf Bare Metal, in virtuellen Maschinen und in der Cloud - ohne
dass sie fiir jede Umgebung angepasst werden muss.

Seit dem Release 14.8.0.0 kann das LMS als ein Satz von Container-Images bereitgestellt werden.
Diese Container-Images werden zusammen gestartet, um ein isoliertes Netzwerk von Containern
zu bilden, in dem ein definierter Satz von Ports flir das Host-System zugéanglich gemacht werden
kann. Container eignen sich besonders gut fiir eine Microservices-Architektur, bei der jeder Dienst
und alle seine Abhangigkeiten in einem einzigen Container-Image gebiindelt sind.

Die Containerisierung bietet eine Menge von Vorteilen:

Portabilitat zwischen verschiedenen Plattformen. Docker-Container kdnnen fast Giberall aus-
gefiihrt werden, sowohl auf virtualisierten Infrastrukturen als auch auf Bare-Metal-Servern. Sie
konnen in der Cloud oder auf jeder selbst gehosteten Maschine mit Linux oder Microsoft
Windows eingesetzt werden.

Verbesserte Sicherheit durch Isolierung der Anwendungen vom Hostsystem und voneinander.

Schnelle und einfache Installations-, Upgrade- und Rollback-Prozesse mit einer Container-Or-
chestrierungssoftware wie Kubernetes.

Skalierbarkeit und Replikation auf Container-/Microservices-Ebene. Dies ermdglicht perfor-
mante und hochverfligbare Systemimplementierungen.

Flexibles Routing zwischen Diensten, die nativ von Containerisierungsplattformen unterstitzt
werden.

Aufgrund dieser Vorteile empfehlen wir, das LMS nach Moglichkeit in einer containerisierten Um-
gebung zu betreiben. Natirlich unterstiitzen wir weiterhin die Option, die neue Microservices-Ar-
chitektur in einer nicht containerisierten Umgebung einzusetzen. Beginnend mit 14.8.0.0 stellen
wir mit jeder Version ein Microsoft Windows Deployment-Paket zur Verfiigung, das vollstandig in
sich geschlossen ist. Neben den WAR-Dateien, die fiir die Ausfiihrung der Dienste erforderlich
sind, enthalt es einen Tomcat-Servlet-Container, eine Java-Laufzeitumgebung und Wartungs-
skripte zur Installation und Wartung der Bereitstellung als Satz von Microsoft Windows-Diensten.

Seite 8

imc AG - Technical Whitepaper | Neue Systemarchitektur und Technologien imc

sarcor Scheer:

2.3 Kommunikation
| Gateway |
/ | Service | \
' o - ~
Identity
Microservice Microservice Management ————— I?Sterrjal
Service entity
S — Provider
. 000V " y,
| Event Bus |
\) synchronous

asynchronous

\ Service Composition /

Abb. 2.3: Kommunikation.

In Bezug auf die Kommunikation wird zwischen externer und interner Kommunikation unterschie-
den. Innerhalb des Systems kommunizieren die Microservices entweder synchron Gber HTTP
oder durch asynchrone Nachrichten Uber einen Message Bus. Ob synchrone oder asynchrone
Kommunikation verwendet wird, hangt vom jeweiligen Anwendungsfall ab.

Von auBen ist das System standardmaRig nur tiber einen einzigen HTTPS-Port zu erreichen. Alle
eintreffenden Anfragen werden von einem dedizierten Microservice, dem Gateway-Dienst, bear-
beitet. Bei jeder Anfrage priift und verifiziert das Gateway ein JWT, das zur Authentifizierung des
Benutzers dient. AnschlieBend leitet er die eingehenden Anfragen an den entsprechenden Dienst
weiter, wobei er eine Reihe von Routing-Regeln verwendet und somit als Reverse-Proxy fungiert.
Das Gateway basiert auf Netflix Zuul.

Falls das Gateway eine Anfrage ohne giiltiges JWT erhalt, leitet es diese Anfrage an den Identity
Management Service (IDM) weiter. Der IDM unterstiitzt verschiedene Authentifizierungsmetho-
den, um den Benutzer zu authentifizieren. Bei Erfolg gibt er ein JWT aus, das einige grundlegende
Informationen liber den Benutzer als Nutzdaten enthélt. Fir browserbasierte Clients wird das
JWT als Cookie gespeichert, so dass jede weitere Anfrage das Gateway passiert und die Dienste
innerhalb der Komposition erreicht. Das LMS stellt eine umfangreiche REST-API zur Verfligung,
die von aullen Uiber das Gateway zuganglich ist. Der Zugriff auf die meisten Endpunkte erfordert
jedoch eine Authentifizierung.

Gateway-Dienst und IDM sind beides Kerndienste, die Teil jeder Bereitstellung sind.

Seite 9

https://jwt.io/
https://github.com/Netflix/zuul

imc AG - Technical Whitepaper | Neue Systemarchitektur und Technologien imc

sarcor Scheer:

2.4 Konfigurationsmanagement

S

Microservice

LS ey
s "y
External
configuration ————— Config Server ———— Microservice
structure
p o
. Y

Microservice

\ Service Composition /

Die Startkonfiguration umfasst alles, was notwendig ist, damit das System ordnungsgemal im
gewlinschten anfanglichen Systemzustand hochfahrt. Dieser Teil der Konfiguration wird beim
Systemstart verarbeitet und andert sich nicht zur Laufzeit. Falls die Startup-Konfiguration gean-
dert werden muss, ist ein Neustart des Systems erforderlich. Die Startup-Konfiguration erfolgt
Uber Konfigurationsdateien mit einem externen, zentralisierten Ansatz.

Abb. 2.4: Startkonfiguration.

Extern bedeutet, dass die Konfiguration nicht Teil der Build-Artefakte ist, sondern aul3erhalb von
ihnen lebt. Durch diese Trennung ist es moglich, die Konfiguration eines Dienstes zu dndern, ohne
dessen Binardateien neu erstellen zu miissen.

Zentralisiert bedeutet, dass es einen dedizierten Dienst gibt, den Config Server, der Teil jedes
Deployments ist und die Konfiguration fiir alle anderen Dienste liber eine REST-API bereitstellt.
Bitte beachten Sie, dass dies zu einer Startabhangigkeit flihrt. Beim Starten des Systems warten
alle Dienste darauf, dass der Config Server verfligbar ist, um sich vor dem Start zu konfigurieren.
Der Config Server basiert auf dem Spring Cloud Config Server. Die eigentlichen Konfigurationsda-
teien konnen in verschiedenen Backends liegen, z. B. in einem Git-Repository, auf einem Webser-
ver oder auf einem lokalen oder einem gemounteten Dateisystem.

Die Laufzeitkonfiguration hingegen umfasst alles andere, also alle Konfigurationseinstellungen,
die beim Systemstart nicht verfligbar sein miissen. Die Laufzeitkonfiguration wird tiber die Benut-
zeroberflache des Config-Managers im ILS-Dienst vorgenommen. Die dort zur Laufzeit vorgenom-
menen Anderungen werden in der ILS-Datenbank gespeichert. Alle anderen Dienste verwenden
einen internen REST-API-Endpunkt, um ihre Laufzeitkonfiguration in regelmaRigen kurzen Abstan-
den abzufragen, um sie anzuwenden.

Seite 10

https://cloud.spring.io/spring-cloud-config/reference/html/

imc AG - Technical Whitepaper | Neue Systemarchitektur und Technologien imc

sarcor Scheer:

Bitte beachten Sie, dass die oben beschriebene Trennung in Startup- und Runtime-Konfiguration
weitgehend, aber noch nicht vollstandig umgesetzt ist. Das bedeutet, dass es immer noch Werte
in den Konfigurationsdateien gibt, die besser in der Datenbank gehalten werden sollten, um sie
andern zu konnen, ohne dass ein Systemneustart erforderlich ist. Dennoch werden wir diese Auf-
teilung in naher Zukunft vollstandig implementiert haben.

2.5 Systembereitstellung

Fur On-Premise-Kunden kann das LMS als Microservices auf verschiedenen Plattformen instal-
liert werden. Die beste Option aus unserer Sicht ist die Bereitstellung in einer Container-Umge-
bung aufgrund der oben genannten Vorteile. Wir bieten auch Deployment-Pakete fiir die Installa-
tion auf einer Bare-Metal-Maschine mit einem Microsoft Windows-Betriebssystem an. Ein Deploy-
ment-Paket fir ein Bare-Metal-Linux stellen wir derzeit nicht zur Verfiigung.

Unsere kontinuierliche Pipeline erstellt automatisch Artefakte fiir jeden Service, den wir anbieten.
Dies sind in der Regel WAR-Dateien fiir Java-Backend-Dienste, die auf Spring boot basieren und
entweder in einem Tomcat Servlet Container oder als eigenstandige Anwendungen ausgefiihrt
werden koénnen. Fir Frontend-Dienste sind die Artefakte minimierte, komprimierte Archive mit Ja-
vaScript-Quellen und anderen Assets, die auf einem einfachen Webserver extrahiert werden kon-
nen. Neben den Artefakten baut die Pipeline auch Docker-Images fiir jeden Dienst. Diese werden
in unserer internen Docker-Registry gehostet und im Falle eines neuen Releases in die AWS ECR
oder eine andere Container-Registry gepusht, um sie den Kunden zur Verfligung zu stellen.

443
=
Port Mapping

[8as3z |

‘ Gateway

Container

Database
Config Server
Pra— Pram—
Config File System Config

Files ‘ Mount Files

Container

\ Container Runtime /

Abb. 2.5: Container-Bereitstellung.

Seite 11

https://spring.io/projects/spring-boot
https://aws.amazon.com/de/ecr/
https://aws.amazon.com/de/ecr/

imc AG - Technical Whitepaper | Neue Systemarchitektur und Technologien imc

sarcor Scheer:

Fir eine containerisierte Bereitstellung stellen wir Docker-Images in kundenspezifischen AWS
ECR-Namespaces bereit. Bitte beachten Sie, dass es auch mehrere Images fir einen einzelnen
Service geben kann, z. B. fiir Backend, Frontend und sogar Datenbank. Diese Images konnen von
einem Kunden nach erfolgreicher Anmeldung gezogen werden. Zusatzlich liefern wir die Start-
konfigurationsdateien als komprimiertes Archiv zusammen mit einer docker-compose.yml-Datei,
die zeigt, wie die Dienste zusammengesetzt werden. Natirlich ist auch eine ausfiihrliche Doku-
mentation im Paket enthalten.

Gateway

—— Config Server

Microsermvice
— |

Microsermnice Cun:ﬂg
— Files

Microservice , |
Tomcat Server | Database

\ Windows Deployment /

Abb. 2.6: Windows-Bereitstellung.

Fir Bare-Metal-Implementierungen unter Microsoft Windows stellen wir ein Paket bereit, das alles
enthalt, was zur Installation und Wartung des Systems erforderlich ist. Dazu gehéren ein abge-
harteter Tomcat-Servlet-Container, Artefakte aller Dienste, eine Java-Laufzeitumgebung, Konfigu-
rationsdateien, Wartungsskripte und eine ausfiihrliche Dokumentation. Die meisten Service-Arte-
fakte werden in Tomcat bereitgestellt, es gibt jedoch zwei Ausnahmen, das Gateway und der Con-
fig Server werden als eigenstandige Spring-Boot-Anwendungen bereitgestellt. Tomcat, Gateway
und Config Server werden bei der Installation des Systems als Microsoft Windows-Dienste regis-
triert, um einen automatischen Start beim Hochfahren von Microsoft Windows zu ermdglichen
und die Moglichkeit zu haben, diese Dienste liber den Microsoft Windows Services Manager zu
stoppen und zu starten.

Fir Cloud-Kunden bieten wir eine Vielzahl von Bereitstellungsoptionen an. Bitte kontaktieren Sie
unsere Hosting-Experten, damit sie lhre Anforderungen einschatzen und die bestmdgliche Lo-
sung fir Sie finden konnen. Insbesondere die Bereitstellung auf Kubenetes ermdglicht eine Viel-
zahl von Optionen zur Anpassung und Feinabstimmung.

Seite 12

imc AG - Technical Whitepaper | Neue Systemarchitektur und Technologien imc

sarcor Scheer:

2.6 Skalierbarkeit und Lastausgleich

Wenn es um den Lastausgleich und den ausfallsicheren Betrieb einer containerisierten Bereitstel-
lung geht, bietet Kubernetes mehrere Moglichkeiten, dies zu erreichen, z. B. durch das Einrichten
von Replikaten von Containern und durch die Verwendung des Kubernetes-Ingress-Controllers.
Neben dem in Kubernetes integrierten Lastausgleichs bieten viele Cloud-Provider Container-Last-
ausgleich-Dienste mit providerabhangigen Fahigkeiten an. Wir verweisen den Leser auf die Doku-
mentation der Container-Orchestrierungsplattform und des Cloud-Anbieters fiir weitere Informa-
tionen. Im Allgemeinen gibt es fiir containerisierte Bereitstellungen eine grofle Auswahl an Last-
ausgleich-Losungen auf dem Markt. Der Hauptvorteil einer containerisierten Bereitstellung in Be-
zug auf Lastausgleich ist die Tatsache, dass es moglich ist, einzelne Container und damit Dienste
dynamisch und automatisch zu skalieren. Das fiihrt zu hochperformanten Systemen, die sich je
nach Ressourcenbedarf anpassen.

Bei einem Windows-Einsatz wird die Skalierung einzelner Dienste, die als Kontexte im Tomcat-
Servlet-Container laufen, nicht unterstitzt. Stattdessen kann das System nur skaliert werden, in-
dem Replikate des gesamten Systems eingerichtet werden. Das heil’t, es werden zwei Bereitstel-
lungen parallel betrieben und ihnen ein Server vorgeschaltet, der Lastausgleich unterstitzt, z. B.
Microsoft IIS. Diese Form der Skalierung ist fix und passt sich nicht an, solange keine zusatzliche
Skalierungssoftware im Spiel ist.

Soll das LMS in einem Cluster-Modus mit mehreren Replikaten betrieben werden, sind einige Be-
sonderheiten zu beachten:

Das LMS ist nicht zustandslos und verwendet Web-Sessions, um den aktuellen Benutzer zu
identifizieren. Daher muss auf dem Load Balancer die Session-Affinitat aktiviert werden.

Das LMS speichert Dateien nicht als bindre Blobs in der Datenbank, sondern als regulare Da-
teien in einem eigenen Verzeichnis "data" im Dateisystem. Dieses Verzeichnis muss von allen
Replikaten gemeinsam genutzt werden, indem Netzlaufwerke fiir Bare-Metal-Bereitstellungen
von Microsoft Windows oder gemeinsam genutzte Cloud-Dateispeicherdienste wie Azure Fi-
les oder AWS EFES fiir containerisierte Bereitstellungen verwendet werden.

Seite 13

https://www.iis.net/
https://aws.amazon.com/efs/

imc AG - Technical Whitepaper | Neue Systemarchitektur und Technologien imc

sarcor Scheer:

2.7 Zentralisierte Protokollierung

Bei Bare-Metal-Bereitstellungen von Microsoft Windows befinden sich alle Protokolldateien in ei-
nem Unterordner des Installationsordners.

Bei containerisierten Bereitstellungen erfolgt die Protokollierung innerhalb der einzelnen Contai-
ner. Sobald ein Container z. B. von der Orchestrierungssoftware nicht mehr bereitgestellt wird,
sind die Protokolldateien fiir diesen Container nicht mehr verfigbar. Um die Persistenz der Logfi-
les zu ermdglichen, bietet unsere Architektur die Moglichkeit, die Konsolenausgabe und alle Log-
files jedes Dienstes an einem zentralen Ort zu sammeln. Diese Aufgabe wird von einem dedizier-
ten Dienst, dem Logging Service, ibernommen. Der Logging Service beinhaltet eine Elasticsearch
-Instanz zur Aggregation der Logdateien und eine Kibana-Instanz zur Visualisierung und Analyse
der Logdateien. Zusammen mit Logstash, einer kleinen Anwendung, die Teil jedes Service-lmages
ist, wird das zentralisierte Logging realisiert.

Seite 14

https://www.elastic.co/
https://www.elastic.co/
https://www.elastic.co/de/kibana
https://www.elastic.co/de/logstash

